Effects of Nanoparticle Enhanced Lubricant Films in Thermal Design of Plain Journal Bearings at High Reynolds Numbers

Author:

Abdollahzadeh Jamalabadi ,Alamian ,Yan ,Li ,Leveneur ,Safdari Shadloo

Abstract

Performance investigation of oil journal bearings is of particular importance given the growing use of them as a support for rotary components in a wide range of industrial machines. Frictional forces and shear stresses, which are proportionate to the velocity of lubricating layers at different points in the bearing space, provide the basis for changing temperature conditions. Various factors such as rotational velocity increase, slip width reduction, and small heat transfer coefficient of lubricant cause intensification of lubricant temperature changes. In the present study, with using computational fluid dynamic (CFD) thermohydrodynamic (THD) numerical simulations, the effect of nanoparticles on the performance features of plain journal bearings is evaluated. Particularly, 3D simulation of a journal bearing is implemented using CFD which considerably improves the accuracy of results, coupled with conjugate heat transfer model for metal parts of bearings. Reynolds equation model is used to calculate the oil-film pressure developed in hydrodynamic journal bearings by applying the nano-based lubricants. The configuration of thrust bearing consists of six pads in this study. In order to reduce the modeling complexity and computational cost and because of the symmetrical geometry of the pads, simulation of a single pad is considered instead of the entire domain. In this study, TiO2 nanoparticle with different volume fraction percentages are used. The parameters that are changed to evaluate the performance of the bearing include volume fraction percentage of the nanoparticle, type of lubricant, and rotational speed. Based on the results, for all different lubricant types, the dissipation power, average shear stress, and temperature rise are increased with augmenting the rotational speed. By increasing the rotational speed from 500 to 1500 rpm, the average shear stress increases by more than 100%, 120%, and 130% for DTE 26, DTE 25, and DTE 24 lubricant types, respectively. Moreover, by increasing the rotational speed from 500 to 1500 rpm, the dissipation power, and temperature rise are increased around 600% and 800%, respectively. Furthermore, increasing nanoparticles volume fraction from 0% to 10%, increases all parameters by approximately 10% for all lubricant types and in all rotational speeds.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3