Bat Optimized Link State Routing Protocol for Energy-Aware Mobile Ad-Hoc Networks

Author:

Jubair Mohammed AhmedORCID,Mostafa Salama A.,Muniyandi Ravie ChandrenORCID,Mahdin Hairulnizam,Mustapha AidaORCID,Hassan Mustafa Hamid,Mahmoud Moamin A.,Al-Jawhar Yasir Amer,Al-Khaleefa Ahmed SalihORCID,Mahmood Ahmed Jubair

Abstract

Mobile ad hoc network (MANET) can be described as a group of wireless mobile nodes that form a temporary dynamic and independent infrastructure network or a central administration facility. High energy consumption is one of the main problems associated with the MANET technology. The wireless mobile nodes used in this process rely on batteries because the network does not have a steady power supply. Thus, the rapid battery drain reduces the lifespan of the network. In this paper, a new Bat Optimized Link State Routing (BOLSR) protocol is proposed to improve the energy usage of the Optimized Link State Routing (OLSR) protocol in the MANET. The symmetry between OLSR of MANET and Bat Algorithm (BA) is that both of them use the same mechanism for finding the path via sending and receiving specific signals. This symmetry resulted in the BOLSR protocol that determines the optimized path from a source node to a destination node according to the energy dynamics of the nodes. The BOLSR protocol is implemented in a MANET simulation by using MATLAB toolbox. Different scenarios are tested to compare the BOLSR protocol with the Cellular Automata African Buffalo Optimization (CAABO), Energy-Based OLSR (EBOLSR), and the standard OLSR. The performance metric consists of routing overhead ratios, energy consumption, and end-to-end delay which is applied to evaluate the performance of the routing protocols. The results of the tests reveal that the BOLSR protocol reduces the energy consumption and increases the lifespan of the network, compared with the CAABO, EBOLSR, and OLSR.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference46 articles.

1. Developing Small Size Low-Cost Software-Defined Networking Switch Using Raspberry Pi;Gupta,2018

2. A Novel Approach for Gateway Node Election Method for Clustering in Wireless Mobile Ad Hoc Networks;Jain,2019

3. An Energy-Balanced Geographic Routing Algorithm for Mobile Ad Hoc Networks

4. Performance Evaluation of AODV, DSR, OLSR, and GRP MANET Routing Protocols Using OPNET

5. Genetic Algorithm-Based Routing Protocol for Energy Efficient Routing in MANETs;Sharma,2018

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3