Abstract
To solve the soft sensor modeling (SSMI) problem in a nonlinear chemical process with dynamic time variation and multi-rate data, this paper proposes a dynamic SSMI method based on an autoregressive moving average (ARMA) model of weighted process data with discount (DSSMI-AMWPDD) and optimization methods. For the sustained influence of auxiliary variable data on the dominant variables, the ARMA model structure is adopted. To reduce the complexity of the model, the dynamic weighting model is combined with the ARMA model. To address the weights of auxiliary variable data with different sampling frequencies, a calculation method for AMWPDD is proposed using assumptions that are suitable for most sequential chemical processes. The proposed method can obtain a discount factor value (DFV) of auxiliary variable data, realizing the dynamic fusion of chemical process data. Particle swarm optimization (PSO) is employed to optimize the soft sensor model parameters. To address the poor convergence problem of PSO, ω-dynamic PSO (ωDPSO) is used to improve the PSO convergence via the dynamic fluctuation of the inertia weight. A continuous stirred tank reactor (CSTR) simulation experiment was performed. The results show that the proposed DSSMI-AMWPDD method can effectively improve the SSM prediction accuracy for a nonlinear time-varying chemical process. The AMWPDD proposed in this paper can reflect the dynamic change of chemical process and improve the accuracy of SSM data prediction. The ω dynamic PSO method proposed in this paper has faster convergence speed and higher convergence accuracy, thus, these models correlate with the concept of symmetry.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献