A Low-Cost and Lithium-Free Hole Transport Layer for Efficient and Stable Normal Perovskite Solar Cells

Author:

Tzoganakis Nikolaos1,Tsikritzis Dimitris12ORCID,Chatzimanolis Konstantinos1ORCID,Zhuang Xiaodong3ORCID,Kymakis Emmanuel12ORCID

Affiliation:

1. Department of Electrical & Computer Engineering, Hellenic Mediterranean University (HMU), 71410 Heraklion, Crete, Greece

2. Institute of Emerging Technologies (i-EMERGE) of HMU Research Center, 71410 Heraklion, Crete, Greece

3. Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites Shangai Key Laboratory of Electrical Insulation and Thermal Gaining, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

The most widely used material as a hole-transport layer (HTL) for effective normal perovskite solar cells (PSCs) is still 2,2′,7,7′-Tetrakis[N, N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (Spiro-OMeTAD), which requires heavy doping with the hydroscopic Lithium bis(trifluoromethanesulfonyl)imide (Li-ΤFSI). However, the long-term stability and performance of PCSs are frequently hampered by the residual insoluble dopants in the HTL, Li+ diffusion throughout the device, dopant by-products, and the hygroscopic nature of Li-TFSI. Due to the high cost of Spiro-OMeTAD, alternative efficient low-cost HTLs, such as octakis(4-methoxyphenyl)spiro[fluorene-9,9′-xanthene]-2,2′,7,7′-tetraamine) (X60), have attracted attention. However, they require doping with Li-TFSI, and the devices develop the same Li-TFSI-derived problems. Here, we propose Li-free 1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMIM-TFSI) as an efficient p-type dopant of X60, resulting in a high-quality HTL with enhanced conductivity and deeper energy levels The optimized X60:EMIM-TFSI-enabled devices exhibit a higher efficiency of 21.85% and improved stability, compared to the Li-TFSI-doped X60 devices. The stability of the optimized EMIM-TFSI-doped PSCs is greatly improved, and after 1200 hr of storage under ambient conditions, the resulting PSCs maintain 85% of the initial PCE. These findings offer a fresh method for doping the cost effective X60 as the HTL with a Li-free alternative dopant for efficient, cheaper, and reliable planar PSCs.

Funder

Greece–China joint R&D project Calypso

Greece, the EU Regional Development Fund

Chinese Ministry of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3