Affiliation:
1. Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
Abstract
In recent years, porous carbon materials with high specific surface area and porosity have been developed to meet the commercial demands of supercapacitor applications. Carbon aerogels (CAs) with three-dimensional porous networks are promising materials for electrochemical energy storage applications. Physical activation using gaseous reagents provides controllable and eco-friendly processes due to homogeneous gas phase reaction and removal of unnecessary residue, whereas chemical activation produced wastes. In this work, we have prepared porous CAs activated by gaseous carbon dioxide, with efficient collisions between the carbon surface and the activating agent. Prepared CAs display botryoidal shapes resulting from aggregation of spherical carbon particles, whereas activated CAs (ACAs) display hollow space and irregular particles from activation reactions. ACAs have high specific surface areas (2503 m2 g−1) and large total pore volumes (1.604 cm3 g−1), which are key factors for achieving a high electrical double-layer capacitance. The present ACAs achieved a specific gravimetric capacitance of up to 89.1 F g−1 at a current density of 1 A g−1, along with a high capacitance retention of 93.2% after 3000 cycles.
Funder
National Research Foundation of Korea
Korea Electric Power Corporation
Subject
General Materials Science,General Chemical Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献