The Effect of Embedded Nanoparticles on the Phonon Spectrum of Ice: An Inelastic X-ray Scattering Study

Author:

De Francesco Alessio12ORCID,Scaccia Luisa3ORCID,Formisano Ferdinando12ORCID,Guarini Eleonora4,Bafile Ubaldo5ORCID,Nykypanchuk Dmytro6,Alatas Ahmet7,Li Mingda8,Lynch Scott T.9ORCID,Cunsolo Alessandro9

Affiliation:

1. CNR-IOM & INSIDE@ILL c/o Operative Group in Grenoble (OGG), F-38042 Grenoble, France

2. Institut Laue-Langevin (ILL), F-38042 Grenoble, France

3. Dipartimento di Economia e Diritto, Università di Macerata, Via Crescimbeni 20, I-62100 Macerata, Italy

4. Dipartimento di Fisica e Astronomia, Università di Firenze, Via G. Sansone 1, I-50019 Sesto Fiorentino, Italy

5. Consiglio Nazionale delle Ricerche, Istituto di Fisica Applicata ”Nello Carrara”, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy

6. Brookhaven National Laboratory-National Synchrotron Light Source-NSLS II, P.O. Box 5000, Upton, NY 11973, USA

7. Argonne National Laboratory, Advanced Photon Source, P.O. Box 5000, Upton, NY 11973, USA

8. Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

9. Department of Physics, University of Wisconsin—Madison, 1150 University Avenue, Madison, WI 53706, USA

Abstract

As a contribution to the ongoing effort toward high-frequency sound manipulation in composite materials, we use Inelastic X-ray Scattering to probe the phonon spectrum of ice, either in a pure form or with a sparse amount of nanoparticles embedded in it. The study aims at elucidating the ability of nanocolloids to condition the collective atomic vibrations of the surrounding environment. We observe that a nanoparticle concentration of about 1 % in volume is sufficient to visibly affect the phonon spectrum of the icy substrate, mainly canceling its optical modes and adding nanoparticle phonon excitations to it. We highlight this phenomenon thanks to the lineshape modeling based on a Bayesian inference, which enables us to capture the finest detail of the scattering signal. The results of this study can empower new routes toward the shaping of sound propagation in materials through the control of their structural heterogeneity.

Funder

National Synchrotron Light Source II

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference29 articles.

1. Kittel, C., McEuen, P., and McEuen, P. (1996). Introduction to Solid State Physics, Wiley.

2. Sound and heat revolutions in phononics;Maldovan;Nature,2013

3. Dark acoustic metamaterials as super absorbers for low-frequency sound;Mei;Nat. Commun.,2012

4. Damping Off Terahertz Sound Modes of a Liquid upon Immersion of Nanoparticles;Scaccia;ACS Nano,2018

5. Onset of interfacial waves in the terahertz spectrum of a nanoparticle suspension;Scaccia;Phys. Rev. E,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3