Combining the Potent Reducing Properties of Pecan Nutshell with a Solvent-Free Mechanochemical Approach for Synthesizing High Ag0 Content-Silver Nanoparticles: An Eco-Friendly Route to an Efficient Multifunctional Photocatalytic, Antibacterial, and Antioxidant Material

Author:

Argenziano Rita1,Agustin-Salazar Sarai2ORCID,Panaro Andrea12,Calarco Anna3ORCID,Di Salle Anna3ORCID,Aprea Paolo4ORCID,Cerruti Pierfrancesco2,Panzella Lucia1ORCID,Napolitano Alessandra1ORCID

Affiliation:

1. Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy

2. Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, I-80078 Pozzuoli, Italy

3. Research Institute on Terrestrial Ecosystems (IRET-CNR), Via P. Castellino 111, I-80131 Naples, Italy

4. Department of Chemical, Materials and Industrial Production Engineering, University of Naples “Federico II”, Piazzale V. Tecchio 80, I-80125 Naples, Italy

Abstract

A straightforward, low-cost, and scalable solid-state mechanochemical protocol for the synthesis of silver nanoparticles (AgNP) based on the use of the highly reducing agri-food by-product pecan nutshell (PNS) is reported herein. Under optimized conditions (180 min, 800 rpm, PNS/AgNO3 ratio = 55/45 w/w), a complete reduction in silver ions was achieved, leading to a material containing ca. 36% w/w Ag0 (X-ray diffraction analysis). Dynamic light scattering and microscopic analysis showed a uniform size distribution (15–35 nm average diameter) of the spherical AgNP. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay revealed lower—although still absolutely high (EC50 = 5.8 ± 0.5 mg/mL)—antioxidant properties for PNS for the further incorporation of AgNP, supporting the efficient reduction of Ag+ ions by PNS phenolic compounds. Photocatalytic experiments indicated that AgNP-PNS (0.4 mg/mL) was able to induce the >90% degradation of methylene blue after 120 min visible light irradiation, with good recycling stability. Finally, AgNP-PNS demonstrated high biocompatibility and significantly light-enhanced growth inhibition properties against Pseudomonas aeruginosa and Streptococcus mutans at concentrations as low as 250 μg/mL, also eliciting an antibiofilm effect at 1000 μg/mL. Overall, the adopted approach allowed to reuse a cheap and abundant agri-food by-product and required no toxic or noxious chemicals, making AgNP-PNS a sustainable and easy-to-access multifunctional material.

Funder

the project “SisTEmi multifunzionali nanofibrosi per controllare e riduRRE gli impatti ambientali nei sistemi agricoli (TERRE)” under the “Progetti di ricerca @CNR 2020” programme

the Italian MIUR

the European Union—NextGenerationEU

the European Union Next-Generation EU

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3