Affiliation:
1. Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
Abstract
The nanocomposites of S@g-C3N4 and NiS-g-C3N4 were synthesized for catalytic hydrogen production from the methanolysis of sodium borohydride (NaBH4). Several experimental methods were applied to characterize these nanocomposites such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and environmental scanning electron microscopy (ESEM). The calculation of NiS crystallites revealed an average size of 8.0 nm. The ESEM and TEM images of S@g-C3N4 showed a 2D sheet structure and NiS-g-C3N4 nanocomposites showed the sheet materials that were broken up during the growth process, revealing more edge sites. The surface areas were 40, 50, 62, and 90 m2/g for S@g-C3N4, 0.5 wt.% NiS, 1.0 wt.% NiS, and 1.5 wt.% NiS, respectively. The pore volume of S@g-C3N4 was 0.18 cm3, which was reduced to 0.11 cm3 in 1.5 wt.% NiS owing to the incorporation of NiS particles into the nanosheet. We found that the in situ polycondensation preparation of S@g-C3N4 and NiS-g-C3N4 nanocomposites increased the porosity of the composites. The average values of the optical energy gap for S@g-C3N4 were 2.60 eV and decreased to 2.50, 2.40, and 2.30 eV as the NiS concentration increased from 0.5 to 1.5 wt.%. All NiS-g-C3N4 nanocomposite catalysts had an emission band that was visible in the 410–540 nm range and the intensity of this peak decreased as the NiS concentration increased from 0.5 to 1.5 wt.%. The hydrogen generation rates increased with increasing content of NiS nanosheet. Moreover, the sample 1.5 wt.% NiS showed the highest production rate of 8654 mL/g·min due to the homogeneous surface organization.
Funder
Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia
Subject
General Materials Science,General Chemical Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献