Affiliation:
1. Faculty of Science, Charles University, 128 00 Prague, Czech Republic
2. Department of Civil & Environmental Engineering, Universidad del Norte, Barranquilla 081001, Colombia
3. School of Civil and Environmental Engineering, Technische Universität Dresden, 01069 Dresden, Germany
4. Department of Industrial Engineering, Universidad del Norte, Barranquilla 081001, Colombia
Abstract
Graphene is a carbon-based nanomaterial used in various industries to improve the performance of hundreds of materials. For instance, graphene-like materials have been employed as asphalt binder modifying agents in pavement engineering. In the literature, it has been reported that (in comparison to an unmodified binder) the Graphene Modified Asphalt Binders (GMABs) exhibit an enhanced performance grade, a lower thermal susceptibility, a higher fatigue life, and a decreased accumulation of permanent deformations. Nonetheless, although GMABs stand out significantly from traditional alternatives, there is still no consensus on their behavior regarding chemical, rheological, microstructural, morphological, thermogravimetric, and surface topography properties. Therefore, this research conducted a literature review on the properties and advanced characterization techniques of GMABs. Thus, the laboratory protocols covered by this manuscript are atomic force microscopy, differential scanning calorimetry, dynamic shear rheometer, elemental analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. Consequently, the main contribution of this investigation to the state-of-the-art is the identification of the prominent trends and gaps in the current state of knowledge.
Subject
General Materials Science,General Chemical Engineering
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献