Ag Catalysts Supported on CeO2, MnO2 and CeMnOx Mixed Oxides for Selective Catalytic Reduction of NO by C3H6

Author:

La Greca Eleonora1ORCID,Kharlamova Tamara S.2,Grabchenko Maria V.2,Consentino Luca1ORCID,Savenko Daria Yu2ORCID,Pantaleo Giuseppe1,Kibis Lidiya S.3ORCID,Stonkus Olga A.3ORCID,Vodyankina Olga V.2ORCID,Liotta Leonarda Francesca1ORCID

Affiliation:

1. Institute for the Study of Nanostructured Materials (ISMN), (Italian) National Research Council (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy

2. Laboratory of Catalytic Research, Tomsk State University, Lenin Ave. 36, 634050 Tomsk, Russia

3. Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, 630090 Novosibirsk, Russia

Abstract

In the present study CeO2, MnO2 and CeMnOx mixed oxide (with molar ratio Ce/Mn = 1) were prepared by sol-gel method using citric acid as a chelating agent and calcined at 500 °C. The silver catalysts (1 wt.% Ag) over the obtained supports were synthesized by the incipient wetness impregnation method with [Ag(NH3)2]NO3 aqueous solution. The selective catalytic reduction of NO by C3H6 was investigated in a fixed-bed quartz reactor using a reaction mixture composed of 1000 ppm NO, 3600 ppm C3H6, 10 vol.% O2, 2.9 vol.% H2 and He as a balance gas, at WHSV of 25,000 mL g−1 h−1.The physical-chemical properties of the as-prepared catalysts were studied by several characterization techniques, such as X-ray fluorescence analysis, nitrogen adsorption/desorption, X-ray analysis, Raman spectroscopy, transmission electron microscopy with analysis of the surface composition by X-ray energy dispersive spectroscopy and X-ray photo-electron spectroscopy. Silver oxidation state and its distribution on the catalysts surface as well as the support microstructure are the main factors determining the low temperature activity in NO selective catalytic reduction. The most active Ag/CeMnOx catalyst (NO conversion at 300 °C is 44% and N2 selectivity is ~90%) is characterized by the presence of the fluorite-type phase with high dispersion and distortion. The characteristic “patchwork” domain microstructure of the mixed oxide along with the presence of dispersed Ag+/Agnδ+ species improve the low-temperature catalyst of NO reduction by C3H6 performance compared to Ag/CeO2 and Ag/MnOx systems.

Funder

Ministry for Science and Education of the Russian Federation

Italian Ministry of Foreign Affairs and International Cooperation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3