The Impact of Lake Ecosystems on Mineral Concentrations in Tissues of Nile Tilapia (Oreochromis niloticus L.)

Author:

Bayissa Tokuma NegishoORCID,Gobena Sangi,Vanhauteghem Donna,Du Laing Gijs,Kabeta Mulugeta Wakjira,Janssens Geert Paul JulesORCID

Abstract

This study evaluates the differences in mineral and toxic trace element concentrations of Nile tilapia (Oreochromis niloticus) tissues from three aquatic ecosystems in Ethiopia—Lake Ziway, Lake Langano, and Gilgel Gibe reservoir—with a focus on edible (fillet) and discarded (digestive tract, gills, skin, and liver) parts. A total of sixty (n = 60) Nile tilapia samples were collected, comprising twenty (n = 20) fish from each lake, and analyzed by inductively coupled plasma mass spectrometry. All elements varied markedly among tissues and between the lakes. Some differences in element concentrations were attributed to differences in nutrient load in the ecosystems and the function of the tissues. For instance, the calcium concentrations in skin and gill were distinctly higher in fish from calcium-rich Lake Langano. The d iscarded parts were richer in essential trace elements, showing an opportunity to promote their use in human nutrition to increase the intake of important minerals. However, the accumulation of elements toxic to humans, such as aluminum, should be monitored and, in particular, controlled when rearing these fish in aquaculture.

Funder

VLIR-UOS- Network- Ethiopian program

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference62 articles.

1. Global Nutrition Report: From Promise to Impact—Ending Malnutrition by 2030,2016

2. State of World Fisheries and Aquaculture,2018

3. State of World Fisheries and Aquaculture,2014

4. Proximate and mineral contents in component parts of Clarias gariepinus and

5. Nutrition and Health: Epidemiology of Diet, Cancer and Cardiovascular Disease in Italy;la Vecchia;Nutr. Metab. Cardiovasc. Dis.,2001

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3