Tribological and Antimicrobial Properties of Two-Component Self-Assembled Monolayers Deposited on Ti-Incorporated Carbon Coatings

Author:

Cichomski Michał1ORCID,Wrońska Natalia2ORCID,Dudek Mariusz3ORCID,Jędrzejczak Anna3ORCID,Lisowska Katarzyna2ORCID

Affiliation:

1. Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Poland

2. Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland

3. Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland

Abstract

In this work, Ti-incorporated carbon coatings were used as substrates for modification with one- and two-component self-assembled monolayers of organosilane compounds using a polydimethylsiloxane (PDMS) stamp. This enabled the selective functionalization of surfaces with micrometric dimensions. The topography of the modified surfaces was defined using an atomic force microscope (AFM). The effectiveness of the modification was confirmed by measurements of the water contact angle and surface free energy using the Oss and Good method. Using a T-23 microtribometer with counterparts in the shape of balls that were made of steel, silicon nitride (Si3N4), and zirconium dioxide (ZrO2), the tribological properties of the obtained coatings were tested. These investigations showed that modification by using a PDMS stamp makes it possible to produce two-component ultrathin silane layers on Ti-containing carbon substrates. Two-component organosilane layers had higher hydrophobicity, a lower friction coefficient, and a smaller width of wear tracks than the one-component analogs. It was also found that the work of adhesion of the created surfaces had a significant influence on the value of the friction coefficient and the percentage value of the growth inhibition of bacteria.

Funder

University of Lodz

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3