Study on the Performance Mechanism of Polyformaldehyde Glycol Ether Polymer for Crude Oil Recovery Enhancement

Author:

Jiang Shaohui1,Lu Wenxue2,Li Tao2,Ma Fujun3,Yao Dahu3,Li Qingsong1

Affiliation:

1. The State Key Laboratory of Heavy Oil Processing, China University of Petroleum East China, Qingdao 266580, China

2. Shandong Energy Group Co., Ltd., Jinan 250100, China

3. School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China

Abstract

The demand for energy continues to increase as the global economy continues to grow. The role of oilfield chemicals in the process of oil and gas exploration, development, and production is becoming more and more important, and the demand is rising year by year. The support of national policies and the formulation of environmental protection regulations have put forward higher requirements for oilfield chemical products, which has promoted the innovative research and development and market application of oilfield chemicals. Polyformaldehyde glycol ether polymer (PGEP) is simple to synthesize, easily biodegradable, green and environmentally friendly, and in line with the development trend of chemicals used in oil and gas development. The interfacial tension performance of PGEP after compounding with different surfactants can reach as low as 0.00034 mN/m, which meets the requirements of the oilfield (interfacial tension ≤ 5 × 10−3 mN/m). The best oil washing efficiency performance of PGEP compounded with different surfactants reached 78.2%, which meets the requirements of the oilfield (oil washing efficiency ≥ 40%). The fracturing fluid drainage efficiency of PGEP after compounding with different surfactants reaches 22%, which meets the requirements of the oilfield (drainage efficiency ≥ 15%). The surface interfacial tension of the system remains constant after the concentration exceeds 0.2% and decreases with lower concentrations. The drainage efficiency increases with increasing concentrations in the range below 0.6%. It was determined that PGEP can be used as a surfactant instead of fatty-alcohol ethoxylates (FAE) in oilfield development.

Funder

National Natural Science Foundation of China

Shandong Energy Group Co., Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3