Durability of Resin Bonding to Dental 3Y-TZP Zirconia Using Different Adhesive Systems

Author:

Yazigi Christine1ORCID,Alawi Shila1,Wille Sebastian1,Lehmann Frank1,Kern Matthias1ORCID

Affiliation:

1. Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University at Kiel, 24105 Kiel, Germany

Abstract

This laboratory study was conducted to evaluate and compare the resin bond strength of different adhesive resin systems in different combinations and the durability of their bonds with zirconia ceramic. Materials and methods: One hundred and twenty-eight specimens were milled from 3Y-TZP zirconia ceramic. The bonding surfaces of all disks were wet polished, steam cleaned, airborne-particle abraded and ultrasonically cleaned in 99% isopropanol. The specimens were randomly divided into four main groups according to the applied resin system; two conventional and two self-adhesive systems were used. Each group was further subdivided into two subgroups; the first was conditioned with the specified primer for conventional luting resins or not conditioned for the self-adhesive systems, whereas the second subgroup of each was conditioned with the same phosphate monomer-containing primer (Alloy Primer). The zirconia specimens were adhesively bonded, using the allocated luting resin, to plexiglass tubes filled with self-curing composite resin (Clearfil FII). Half of the specimens of each subgroup were stored in distilled water at 37 °C for 3 days, whereas the other half were subjected to artificial aging, 150 days of storage and additional thermal cycling. Thereafter, all specimens were subjected to TBS testing using a universal testing machine. Statistical analysis was conducted using two-way ANOVA followed by separate one-way ANOVAs. The Games–Howell post-hoc test was applied for pairwise comparisons. Results: All specimens survived storage with thermal cycling. The mean TBS values ranged from a minimum of 43.4 ± 5.0 MPa to a maximum of 66.4 ± 3.5 after 3 days and from a minimum of 13.6 ± 2.5 MPa to a maximum of 50.1 ± 9.4 MPa after 150 days. Conclusions: Artificial aging had a significantly negative effect on all test groups. The chosen adhesive-resin system had a significant effect on the resulting TBS values. The highest TBS values were achieved for the self-adhesive luting resin G-Cem One but were statistically comparable to the results obtained for the dual-cure luting resin G-Cem LinkForce.

Publisher

MDPI AG

Subject

General Materials Science

Reference54 articles.

1. Tooth structure removal associated with various preparation designs for posterior teeth;Edelhoff;Int. J. Periodontics Restor. Dent.,2002

2. Tensile bond strength of so-called universal primers and universal multimode adhesives to zirconia and lithium disilicate ceramics;Elsayed;J. Adhes. Dent.,2017

3. From porcelain-fused-to-metal to zirconia: Clinical and experimental considerations;Zarone;Dent. Mater.,2011

4. Advances in materials and concepts in fixed prosthodontics: A selection of possible treatment modalities;Edelhoff;Br. Dent. J.,2019

5. Tooth structure removal associated with various preparation designs for anterior teeth;Edelhoff;J. Prosthet. Dent.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3