Mycelium-Based Composites as a Sustainable Solution for Waste Management and Circular Economy

Author:

Barta Daniel-Gabriel1,Simion Irina12,Tiuc Ancuța-Elena2ORCID,Vasile Ovidiu3ORCID

Affiliation:

1. B&G Family Innovation SRL, Street Tăutului 242B, 407280 Cluj-Napoca, Romania

2. Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, Muncii Boulevard 103-105, 400641 Cluj-Napoca, Romania

3. Department of Mechanics, Faculty of Biotechnical Systems Engineering, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania

Abstract

The global population is expected to increase by nearly 2 billion individuals over the next three decades, leading to a significant surge in waste generation and environmental challenges. To mitigate these challenges, there is a need to develop sustainable solutions that can effectively manage waste generation and promote a circular economy. Mycelium-based composites (MBCs) are being developed for various applications, including packaging, architectural designs, sound absorption, and insulation. MBCs are made by combining fungal mycelium with organic substrates, using the mycelium as a natural adhesive. Mycelium, the vegetative part of fungi, can be grown on various organic feedstocks and functionalized into a range of diverse material types that are biobased and thus more sustainable in their production, use, and recycling. This work aims to obtain mycelium-based composites with acoustic absorption properties, using coffee grounds and agricultural waste as raw materials. The topic approached presents a new method of recovering spent coffee grounds that does not involve high production costs and reduces two current environmental problems: noise pollution and abundant waste. Measurements of the normal-incidence sound absorption coefficient were presented and analyzed. Mycelium-based composites offer an innovative, sustainable approach to developing bio-composite sound-absorbing surfaces for interior fittings. The material by Ganoderma lucidum exhibits exceptional sound-absorbing properties at frequencies below 700 Hz, which is a crucial aspect of creating sound-absorbing materials that effectively absorb low-frequency sound waves. The modular construction system allows for a high degree of flexibility to adapt to short-term changes in the workplace.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3