Study on the Compressive and Flexural Properties of Coconut Fiber Magnesium Phosphate Cement Curing at Different Low Temperatures

Author:

Lin Zhiwei12,Zhang Liwen123ORCID,Zheng Wenzhi123,Huang Xiangyun3,Zhang Junping3

Affiliation:

1. Department of Civil Engineering, Guangzhou University, Guangzhou 510006, China

2. Digital Intelligence Research Center for Roads and Bridges, Guangzhou University, Guangzhou 510006, China

3. Earthquake Engineering Research & Test Center, Guangzhou University, Guangzhou 510006, China

Abstract

The incorporation of coconut fiber (CF) into magnesium phosphate cement (MPC) can effectively improve upon its high brittleness and ease of cracking. In practical engineering, coconut fiber-reinforced magnesium phosphate cement (CF-MPC) will likely work in cold environments. Therefore, it is essential to understand the effects of various types of low-temperature curing on CF-MPC performances, but there are very few studies in this area. In this study, the static compression and three-point bending test were utilized to examine the compressive and flexural characteristics of CF-MPC with various CF contents and different negative curing temperatures. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were conducted to observe the impact of low-temperature maintenance on the structure and hydration reaction of the specimens. The results indicate that CF-MPC curing at low temperatures was more prone to cracks during compression and bending, while the appropriate amount of CF could enhance its plastic deformation capability. The CF-MPC’s compressive and flexural strength declined as the curing temperature dropped. Moreover, with the rise in CF content, the samples’ compressive strength also tended to fall, and there was a critical point for the change in flexural strength. In addition, MPC’s primary hydration product (MgKPO4·6H2O) decreased with a drop in curing temperature, and more holes and fractures appeared in CF-MPC.

Funder

Natural Science Foundation of Guangdong Province

major project of the National Natural Science Foundation of China

National Natural Science Foundation of China

general program of the National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3