A Review on CO2 Sequestration via Mineralization of Coal Fly Ash

Author:

Jiang Long1,Cheng Liang1,Zhang Yuxuan2,Liu Gaojun1,Sun Jian2

Affiliation:

1. North China Electric Power Research Institute Co., Ltd., Beijing 100045, China

2. School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China

Abstract

Coal fly ashes (COFA) are readily available and reactive materials suitable for CO2 sequestration due to their substantial alkali components. Therefore, the onsite collaborative technology of COFA disposal and CO2 sequestration in coal-fired power plants appears to have potential. This work provides an overview of the state-of-the-art research studies in the literature on CO2 sequestration via the mineralization of COFA. The various CO2 sequestration routes of COFA are summarized, mainly including direct and indirect wet carbonation, the synthesis of porous CO2 adsorbents derived from COFA, and the development of COFA-derived inert supports for gas-solid adsorbents. The direct and indirect wet carbonation of COFA is the most concerned research technology route, which can obtain valued Ca-based by-products while achieving CO2 sequestration. Moreover, the Al and Si components rich in fly ash can be adapted to produce zeolite, hierarchical porous nano-silica, and nano-silicon/aluminum aerogels for producing highly efficient CO2 adsorbents. The prospects of CO2 sequestration technologies using COFA are also discussed. The objective of this work is to help researchers from academia and industry keep abreast of the latest progress in the study of CO2 sequestration by COFA.

Funder

Jiangsu Education Department Fund

Graduate Research and Innovation Projects of Jiangsu Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3