REERP: A Region-Based Energy-Efficient Routing Protocol for IoT Wireless Sensor Networks

Author:

Dogra Roopali1,Rani Shalli1ORCID,Gianini Gabriele2ORCID

Affiliation:

1. Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India

2. Universita degli Studi di Milano, Via Celoria 18, 20133 Milano, Italy

Abstract

An essential component of the Internet of Things (IoT) is wireless sensor networks (WSNs). Since individual sensor nodes are strongly power-constrained, several techniques are adopted to save power. By grouping nodes into clusters—thus reducing the transmission distance between sensor nodes and the base station (BS)—a clustering protocol can ensure energy preservation and increase the lifetime of the network. However, current clustering techniques have problems with the clustering structure that negatively impact their performance. Whenever routing protocols were implemented for a longer period of time, it was observed that they had a higher rate of energy consumption, a shorter period of stability, and fewer data transfers to the BS. In this paper, an improved region-based routing protocol (REERP) is developed for wireless sensor networks in the IoT is developed. It is based on (i) the addition of new nodes to the already formed clusters, (ii) the selection of the new head node based on the amount of residual energy, (iii) the setup of the multi-hop communication in all the regions of network, and (iv) the utilization of the energy hole reduction method. All of these tactics increase the useful life of the network. Performance has been evaluated against (1) a stable election protocol, (2) a gateway energy-aware routing protocol, and (3) a heterogeneous gateway energy-aware routing protocol, and using the metrics lifetime, energy consumption, number of dead nodes, and number of packets sent to the base station vs. number of packets acquired by the base station. The results of the proposed routing protocol have been found to outperform the state-of-the-art approaches considered.

Funder

European Union—NextGenerationEU

EU—NextGenerationEU

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3