Development of a Dual Fuel ICE-Based Micro-CHP System and Experimental Evaluation of Its Performance at Light Loads Using Natural Gas as Primary Fuel

Author:

Castaño Mesa Edisson S.1ORCID,Quintana Sebastián H.1ORCID,Bedoya Iván D.1ORCID

Affiliation:

1. Grupo de Ciencia y Tecnología del Gas y Uso Racional de la Energía—GASURE, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 53-108, Medellín 050010, Colombia

Abstract

This study presents the implementation of a micro-generation system and its operation procedure, based on a dual fuel diesel engine using natural gas as the primary fuel and conventional diesel as the pilot fuel. On the other hand, the evaluation and validation results by experimental testing of a model according to International Energy Agency—IEA—Annex 42, applied to dual fuel diesel micro-cogeneration system, are also presented. The control procedure for experimental operation depends of both inputs’ electric power generation demand and desired substitution level due a given natural gas availability. The heat recovery system of the micro-generation system uses a gas–liquid compact heat exchanger that was selected and implemented, where wasted heat from exhaust gases was transferred to liquid water as a cool fluid. Effective operation engine performance was determined by measurement of masses’ flow rate such as inlet air, diesel and natural gas, and also operation parameters such as electric power generation and recovered thermal power were measured. Electric power was generated by using an electric generator and then dissipated as heat by using an electric resistors bank with a dissipation capacity of 18kW. Natural gas fuel was supplied and measured by using a sonic nozzle flowmeter; in addition, natural gas composition was close to 84.7% CH4, 0.74% CO2 and 1.58% N2, with the rest of them as higher hydrocarbons. The highest overall efficiency (electric efficiency plus heat recovery efficiency) was 52.3% at 14.4 kW of electric power generation and 0% of substitution level. Several substitution levels were tested at each engine electric power generation, obtaining the maximum substitution level of 61% at 17.7 kW of electric power generation. Finally, model prediction results were closed to experimental results, both stationary and transient. The maximum error presented was close to 20% associated to thermal efficiency. However, errors for all other variables were lower than 10% for most of micro-cogeneration system operation points.

Funder

Colombia Scientific Program within the framework of the call Ecosistema Científico

University of Antioquia thought the research project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3