Improving Torque Analysis and Design Using the Air-Gap Field Modulation Principle for Permanent-Magnet Hub Machines

Author:

Sun Yuhua12ORCID,Bianchi Nicola1ORCID,Ji Jinghua2,Zhao Wenxiang2

Affiliation:

1. Department of Industrial Engineering, University of Padova, 35131 Padova, Italy

2. School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China

Abstract

The Double Permanent Magnet Vernier (DPMV) machine is well known for its high torque density and magnet utilization ratio. This paper aims to investigate the torque generation mechanism and its improved design in DPMV machines for hub propulsion based on the field modulation principle. Firstly, the topology of the proposed DPMV machine is introduced, and a commercial PM machine is used as a benchmark. Secondly, the rotor PM, stator PM, and armature magnetic fields are derived and analyzed considering the modulation effect, respectively. Meanwhile, the contribution of each harmonic to average torque is pointed out. It can be concluded that the 7th-, 12th-, 19th- and 24th-order flux density harmonics are the main source of average torque. Thanks to the multi-working harmonic characteristics, the average torque of DPMV machines has significantly increased by 31.8% compared to the counterpart commercial PM machine, while also reducing the PM weight by 75%. Thirdly, the auxiliary barrier structure and dual three-phase winding configuration are proposed from the perspective of optimizing the phase and amplitude of working harmonics, respectively. The improvements in average torque are 9.9% and 5.4%, correspondingly.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3