Abstract
The accurate identification of PLES changes and the discovery of their evolution characteristics is a key issue to improve the ability of the sustainable development for resource-based urban areas. However, the current methods are unsuitable for the long-term and large-scale PLES investigation. In this study, a modified method of PLES recognition is proposed based on the remote sensing image classification and land function evaluation technology. A multi-dimensional index system is constructed, which can provide a comprehensive evaluation for PLES evolution characteristics. For validation of the proposed methods, the remote sensing image, geographic information, and socio-economic data of five resource-based urbans (Zululand in South Africa, Xuzhou in China, Lota in Chile, Surf Coast in Australia, and Ruhr in Germany) from 1975 to 2020 are collected and tested. The results show that the data availability and calculation efficiency are significantly improved by the proposed method, and the recognition precision is better than 87% (Kappa coefficient). Furthermore, the PLES evolution characteristics show obvious differences at the different urban development stages. The expansions of production, living, and ecological space are fastest at the mining, the initial, and the middle ecological restoration stages, respectively. However, the expansion of living space is always increasing at any stage, and the disorder expansion of living space has led to the decrease of integration of production and ecological spaces. Therefore, the active polices should be formulated to guide the transformation of the living space expansion from jumping-type and spreading-type to filling-type, and the renovation of abandoned industrial and mining lands should be encouraged.
Funder
Central University Basic Research Fund of China
Subject
General Earth and Planetary Sciences
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献