Scour Hole Development in Natural Cohesive Bed Sediment around Cylinder-Shaped Piers Subjected to Varying Sequential Flow Events

Author:

Mahalder Badal,Schwartz John S.,Palomino Angelica M.,Zirkle Jon

Abstract

Scour evolution and propagation around a cylinder in natural cohesive sediment was uniquely investigated under multi-flow event varying sequentially by velocity magnitudes. This flume study differs from others that only used test sediment with commercially available clays for single flow. The objective of this study was to explore the potential differences in scour hole development in natural riverbed sediments subjected to varying flow velocity scenarios, advancing our understanding from existing studies on scour. The study consisted of 18 experimental runs based on: velocity, flow duration, and soil bulk density. Scour hole development progressed initially along the cylinder sides, and maximum depths also occurred at these lateral locations. Scour hole depths were less for higher soil bulk densities (≥1.81 g/cm3) compared with lower densities, and erosion rates were slower. It was observed with all flow sequences that scour depths were similar at the end of each experimental run. However, scour initiation was observed to be time dependent for soils with higher bulk density (1.81–2.04 g/cm3) regardless of flow velocity sequences. The observed time dependency suggests a process feedback with the scour hole development initiated at the cylinder sides, which influence local 3D hydraulics as the scour hole depth progresses.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference41 articles.

1. Planning for a comprehensive bridge safety assurance program;Shirole;Transp. Res. Rec.,1991

2. Analysis of Recent Bridge Failures in the United States

3. Bridge Failure Rate

4. SRICOS: Prediction of Scour Rate in Cohesive Soils at Bridge Piers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3