The Catalytic Degradation of the Inflammatory Drug Diclofenac Sodium in Water by Fe2+/Persulfate, Fe2+/Peroxymonosulfate and Fe2+/H2O2 Processes: A Comparative Analysis

Author:

Rehman Faiza1,Ahmad Waqas1,Parveen Nazish1,Zakir Syed Khuram1,Khan Sanaullah23,Han Changseok45ORCID

Affiliation:

1. Department of Chemistry, University of Poonch, Rawalakot 12350, Pakistan

2. Department of Chemistry, Women University Swabi, Swabi 23430, Pakistan

3. Department of Biochemistry, Women University Swabi, Swabi 23430, Pakistan

4. Department of Environmental Engineering, INHA University, Incheon 22212, Republic of Korea

5. Program in Environmental & Polymer Engineering, Graduate School, INHA University, Incheon 22212, Republic of Korea

Abstract

Diclofenac sodium was extensively used for treating arthritis, osteoarthritis and skeletal muscular injuries, which ultimately caused troubles for aquatic organisms as well as human beings. In this study, homogeneous catalytic advanced oxidation processes, including Fe2+/persulfate, Fe2+/peroxymonosulfate and Fe2+/H2O2, were used for the degradation of diclofenac sodium in water, without using UV-C light. About 89, 82 and 54% DCF sodium was decomposed by Fe2+/persulfate, Fe2+/peroxymonosulfate and Fe2+/H2O2, respectively, in 60 min. The degradation of diclofenac sodium followed the pseudo first-order kinetics, in all cases. The degradation efficiency of diclofenac sodium was significantly affected in the presence of various anions, such as NO3−, HCO3− and SO42−. The mineralization studies revealed 62, 45 and 32% total carbon removal by Fe2+/persulfate, Fe2+/peroxymonosulfate and Fe2+/H2O2, respectively, in 60 min. In addition, the degradation byproducts of diclofenac sodium were determined by FTIR analysis. The results revealed that the Fe2+/oxidant system, particularly Fe2+/persulfate, was a promising technology for the elimination of toxic pharmaceuticals, such as diclofenac sodium, from the water environment.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3