Epac1 and Glycyrrhizin Both Inhibit HMGB1 Levels to Reduce Diabetes-Induced Neuronal and Vascular Damage in the Mouse Retina

Author:

Liu Li,Jiang Youde,Steinle Jena J.ORCID

Abstract

The role of high mobility group box 1 (HMGB1) in acute diabetic retinal damage has been demonstrated. We recently reported that glycyrrhizin, a HMGB1 inhibitor, protected the diabetic retina against neuronal, vascular, and permeability changes. In this study, we wanted to investigate the role of exchange protein for cAMP 1 (Epac1) on HMGB1 and the actions of glycyrrhizin. Using endothelial cell specific knockout mice for Epac1, we made some mice diabetic using streptozotocin, and treated some with glycyrrhizin for up to 6 months. We measured permeability, neuronal, and vascular changes in the Epac1 floxed and knockout mice. We also investigated whether Epac1 and glycyrrhizin work synergistically to reduce the retinal inflammatory mediators, tumor necrosis factor alpha (TNFα) and interleukin-1-beta (IL1β), as well as sirtuin 1 (SIRT1) levels. Epac1 and glycyrrhizin reduced inflammatory mediators with synergistic actions. Glycyrrhizin also increased SIRT1 levels in the Epac1 mice. Overall, these studies demonstrate that glycyrrhizin and Epac1 can work together to protect the retina. Finally, glycyrrhizin may regulate HMGB1 through increased SIRT1 actions.

Funder

National Eye Institute

Research to Prevent Blindness

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3