Mobility Support 5G Architecture with Real-Time Routing for Sustainable Smart Cities

Author:

Rehman AmjadORCID,Haseeb KhalidORCID,Saba TanzilaORCID,Lloret JaimeORCID,Ahmed Zara

Abstract

The Internet of Things (IoT) is an emerging technology and provides connectivity among physical objects with the support of 5G communication. In recent decades, there have been a lot of applications based on IoT technology for the sustainability of smart cities, such as farming, e-healthcare, education, smart homes, weather monitoring, etc. These applications communicate in a collaborative manner between embedded IoT devices and systematize daily routine tasks. In the literature, many solutions facilitate remote users to gather the observed data by accessing the stored information on the cloud network and lead to smart systems. However, most of the solutions raise significant research challenges regarding information sharing in mobile IoT networks and must be able to stabilize the performance of smart operations in terms of security and intelligence. Many solutions are based on 5G communication to support high user mobility and increase the connectivity among a huge number of IoT devices. However, such approaches lack user and data privacy against anonymous threats and incur resource costs. In this paper, we present a mobility support 5G architecture with real-time routing for sustainable smart cities that aims to decrease the loss of data against network disconnectivity and increase the reliability for 5G-based public healthcare networks. The proposed architecture firstly establishes a mutual relationship among the nodes and mobile sink with shared secret information and lightweight processing. Secondly, multi-secured levels are proposed to protect the interaction with smart transmission systems by increasing the trust threshold over the insecure channels. The conducted experiments are analyzed, and it is concluded that their performance significantly increases the information sustainability for mobile networks in terms of security and routing.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3