Component Combination Test to Investigate Improvement of the IHACRES and GR4J Rainfall–Runoff Models

Author:

Shin Mun-Ju,Kim Chung-Soo

Abstract

Rainfall–runoff models are not perfect, and the suitability of a model structure depends on catchment characteristics and data. It is important to investigate the pros and cons of a rainfall–runoff model to improve both its high- and low-flow simulation. The production and routing components of the GR4J and IHACRES models were combined to create two new models. Specifically, the GR_IH model is the combination of the production store of the GR4J model and the routing store of the IHACRES model (vice versa in the IH_GR model). The performances of the new models were compared to those of the GR4J and IHACRES models to determine components improving the performance of the two original models. The suitability of the parameters was investigated with sensitivity analysis using 40 years’ worth of spatiotemporally different data for five catchments in Australia. These five catchments consist of two wet catchments, one intermediate catchment, and two dry catchments. As a result, the effective rainfall production and routing components of the IHACRES model were most suitable for high-flow simulation of wet catchments, and the routing component improved the low-flow simulation of intermediate and one dry catchments. Both effective rainfall production and routing components of the GR4J model were suitable for low-flow simulation of one dry catchment. The routing component of the GR4J model improved the low- and high-flow simulation of wet and dry catchments, respectively, and the effective rainfall production component improved both the high- and low-flow simulations of the intermediate catchment relative to the IHACRES model. This study provides useful information for the improvement of the two models.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3