Metabolomics and Microbiomics Insights into Differential Surface Fouling of Three Macroalgal Species of Fucus (Fucales, Phaeophyceae) That Co-Exist in the German Baltic Sea

Author:

Oppong-Danquah Ernest1ORCID,Blümel Martina1ORCID,Tasdemir Deniz12ORCID

Affiliation:

1. GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1–3, 24148 Kiel, Germany

2. Faculty of Mathematics and Natural Science, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany

Abstract

The brown algal genus Fucus provides essential ecosystem services crucial for marine environments. Macroalgae (seaweeds) release dissolved organic matter, hence, are under strong settlement pressure from micro- and macrofoulers. Seaweeds are able to control surface epibionts directly by releasing antimicrobial compounds onto their surfaces, and indirectly by recruiting beneficial microorganisms that produce antimicrobial/antifouling metabolites. In the Kiel Fjord, in the German Baltic Sea, three distinct Fucus species coexist: F. vesiculosus, F. serratus, and F. distichus subsp. evanescens. Despite sharing the same habitat, they show varying fouling levels; F. distichus subsp. evanescens is the least fouled, while F. vesiculosus is the most fouled. The present study explored the surface metabolomes and epiphytic microbiota of these three Fucus spp., aiming to uncover the factors that contribute to the differences in the fouling intensity on their surfaces. Towards this aim, algal surface metabolomes were analyzed using comparative untargeted LC-MS/MS-based metabolomics, to identify the marker metabolites influencing surface fouling. Their epiphytic microbial communities were also comparatively characterized using high-throughput amplicon sequencing, to pinpoint the differences in the surface microbiomes of the algae. Our results show that the surface of the least fouling species, F. distichus subsp. evanescens, is enriched with bioactive compounds, such as betaine lipids MGTA, 4-pyridoxic acid, and ulvaline, which are absent from the other species. Additionally, it exhibits a high abundance of the fungal genera Mucor and Alternaria, along with the bacterial genus Yoonia-Loktanella. These taxa are known for producing antimicrobial/antifouling compounds, suggesting their potential role in the observed fouling resistance on the surface of the F. distichus subsp. evanescens compared to F. serratus and F. vesiculosus. These findings provide valuable clues on the differential surface fouling intensity of Fucus spp., and their importance in marine chemical defense and fouling dynamics.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

Reference103 articles.

1. The microbiome of the habitat-forming brown alga Fucus vesiculosus (Phaeophyceae) has similar cross-Atlantic structure that reflects past and present drivers1;Morrison;J. Phycol.,2021

2. The ecology and physiology of seaweeds: An overview;Ravishankar;Sustainable Global Resources of Seaweeds Volume 1: Bioresources, Cultivation, Trade and Multifarious Applications,2022

3. The status of brown macroalgae Fucus spp. and its relation to environmental variation in the Finnish marine area, northern Baltic Sea;Rinne;Ambio,2020

4. Establishment of the exotic species Fucus evanescens C. Ag. (Phaeophyceae) in Öresund, southern Sweden;Kautsky;Bot. Mar.,2002

5. Hybridization of the marine seaweeds, Fucus serratus and Fucus evanescens (Heterokontophyta: Phaeophyceae) in a 100-year-old zone of secondary contact;Coyer;Proc. R. Soc. Lond. Ser. B Biol. Sci.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3