Author:
Dai Xiaoyu,Ruan Banxian,Xiang Yuanjiang
Abstract
A hybrid structure composed of periodic monolayer graphene nanoribbons and a dielectric multilayer structure was designed to generate a Fano resonance (FR). The strong interaction between the surface plasmon resonance of graphene and the dielectric waveguide mode results in the FR. The finite element method is utilized to investigate the behaviors of the FR, and it matches well with the theoretical calculations using rigorous coupled wave theory. The results demonstrate that the profile of the FR can be passively tuned by the period of the graphene nanoribbons and actively tuned by the Fermi level of the graphene. The decoupled nature of the FR gives it potential applications as a self-calibrated refractive index biosensor, and the sensitivity can reach as high as 4.615 μm/RIU. Thus, this work provides a new idea for an excellent self-referencing refractive index biosensor.
Funder
National Natural Science Foundation of China
Science and Technology Planning Project of Shenzhen Municipality
Subject
Clinical Biochemistry,General Medicine
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献