GPS Week Number Rollover Timestamp Complement

Author:

Qabalin Majdi K.,Naser Muawya,Hawajreh Wafa M.,Abu-Zaideh Saja

Abstract

Global Positioning System (GPS) is a global navigation satellite system and the most common satellite system used in navigation and tracking devices. The phenomenon of week number rollover happened recently—a year ago—due to a design limitation in the week number variable that counting weeks which causes vast losses. As many fleet management systems depend on GPS raw data, such systems stopped working due to inaccurate data provided by GPS receivers. In this paper, we propose a technical and mathematical analysis for the GPS week number rollover phenomenon and suggest a solution to avoid the resulting damage to other subsystems that depend on the GPS device’s raw data. In addition, this paper seeks to provide precautionary measures to deal with the problem proactively. The Open Systems Interconnection model (OSI) and transport layer level solution that has been suggested depends on a TCP packet reforming tool that re-formats the value of the week number according to a mathematical model based on a timestamp complement. At the level of the database, a solution is also suggested which uses triggers. A hardware-level solution is suggested by applying a timestamp complement over the GPS internal controller. Complete testing is applied for all suggested solutions using actual data provided by Traklink—a leading company in navigation and fleet management solutions. After testing, it is evident that the transport layer level solution was the most effective in terms of speed, efficiency, accuracy, cost, and complexity. Applying a transport layer level complement mathematical model can fix the consequences of GPS week number rollover and provide stability to all subsystems that used GPS data from infected devices.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Time Synchronization Algorithm Based on Correlation Analysis in GNSS/INS Integrated Navigation;2022 IEEE International Conference on Unmanned Systems (ICUS);2022-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3