3D Electrochemical Sensor and Microstructuration Using Aerosol Jet Printing

Author:

Fapanni TizianoORCID,Sardini EmilioORCID,Serpelloni MauroORCID,Tonello SarahORCID

Abstract

Electrochemical sensors are attracting great interest for their different applications. To improve their performances, basic research focuses on two main issues: improve their metrological characteristics (e.g., repeatability, reusability and sensitivity) and investigate innovative fabrication processes. In this work, we demonstrate an innovative microstructuration technique aimed at increasing electrochemical sensor sensitivity to improve electrode active area by an innovative fabrication technique. The process is empowered by aerosol jet printing (AJP), an additive-manufacturing and non-contact printing technique that allows depositing functional inks in precise patterns such as parallel lines and grids. The 3D printed microstructures increased the active surface area by up to 130% without changing the substrate occupancy. Further, electrochemical detection of ferro/ferri-cyanide was used to evaluate the sensitivity of the electrodes. This evaluation points out a sensitivity increase of 2.3-fold on average between bare and fully microstructured devices. The increase of surface area and sensitivity are well linearly correlated as expected, verifying the fitness of our production process. The proposed microstructuration is a viable solution for many applications that requires high sensitivity, and the proposed technique, since it does not require masks or complex procedures, turns out to be flexible and applicable to infinite construction geometries.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3