Assessment of a Bionic Broach Implanted with Nylon Fibers

Author:

Ni Jing,Zhang Haohan,Feng KaiORCID,Zhao Huijun

Abstract

The optimization of a broach surface is of great significance to improve the cutting performance of the tool. However, the traditional optimization method (surface texture, coating, etc.) destroys the stress distribution of the tool and reduces the service life of the tool. To avoid these problems, four kinds of flocking surfaces (FB1, FB2, FB3, and FB4), imitating the biological structure of Daphniphyllum calycinum Benth (DCB), were fabricated on the rake face of the broach by electrostatic flocking. The broaching experiment, wettability, and spreading experiment were then conducted. Moreover, the mathematical model of the friction coefficient of the bionic broach was built. The effect of broaches with different flocking surfaces on the broaching force, chip morphology, and surface quality of workpieces was studied. The results indicate that the flocked broaches (FB) with good lubricity and capacity of microchips removal (CMR) present a smaller cutting force (Fc) and positive pressure (Ft) compared to the unflocked broach (NB), and reduce the friction coefficient (COF). The chip curl was decreased, and the shear angle was increased by FB, which were attributed to the function of absorbing lubricant, storing, and sweeping microchips. Its vibration suppression effect enhanced the stability in the broaching process and improved the surface quality of the workpiece. More importantly, the FB2 with the most reasonable fluff area and spacing exhibited the best cutting performance. The experimental conclusions and methods of this paper can provide a new research idea for functional structure tools.

Funder

Jing Ni

Jing NI

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3