All-Natural Moss-Based Microstructural Composites in Deformable Form for Use as Graffiti and Artificial-Porous-Material Replacement

Author:

Kim Bu-GonORCID,Yoon Min-Ho,Kim JaehwanORCID,Oh Jung-Hwan

Abstract

Although artificial porous materials are useful for dissipating acoustic waves, they pose a major environmental threat as most are non-recyclable. Developing sustainable structural materials with the mechanical and energy-absorption properties required to replace artificial porous materials is currently a key challenge. Here, we report, for the first time, a novel microstructure using all-natural moss with a compressive strength of up to 2.35 GPa and a sound-absorption performance of up to 90%, depending on the additives, such as yogurt, starch, and beer. In addition, the moss-based microstructure was applied as graffiti to a three-dimensionally printed house model to demonstrate improved performance against the effects of sound. By incorporating energy-absorbing materials without harmful substances, the desired structure can be decorated with the graffiti method. This work could pave the way for attenuating sound-wave and impact noise by using graffiti work on structural composite materials.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3