The Mechanical Behavior and Enhancement Mechanism of Short Carbon Fiber Reinforced AFS Interface

Author:

Yan Chang,Cai Jiaxu,Xiang Kun,Zhao Jinfeng,Lei Wanqing,Fang Changqing

Abstract

The aluminum foam sandwich (AFS), which perfectly combines the excellent merits of an aluminum foam core and face sheet materials, has extensive and reliable applications in many fields, such as aerospace, military equipment, transportation, and so on. Adhesive bonding is one of the most widely used methods to produce AFS due to its general applicability, simple process, and low cost, however, the bonding interface is known as the weak link and may cause a serious accident. To overcome the shortcomings of a bonded AFS interface, short carbon fiber as a reinforcement phase was introduced to epoxy resin to reinforce the interface adhesion strength of AFS. Single lap shear tests and three-point bending tests were conducted to study the mechanical behavior of the reinforced interface and AFS, respectively. The failure mechanism was studied through a macro- and microanalysis. The result showed that after the reinforcement of carbon fiber, the tangential shear strength of the interface increased by 73.65%. The effective displacement of AFS prepared by the reinforced epoxy resin is 125.95% more than the AFS prepared by the unreinforced epoxy resin. The flexure behavior of the reinforced AFS can be compared with AFS made through a metallurgical method. Three categories of reinforcement mechanisms were discovered: (a) the pull off and pull mechanism: when the modified carbon fiber performed as the bridge, the bonding strength improved because of the pull off and pull out of fibers; (b) adhesion effect: the carbon fiber gathered in the hole edge resulted in epoxy resins being gathered in there too, which increased the effective bonding area of the interface; (c) mechanical self-locking effect: the carbon fiber enhanced the adhesive filling performance of aluminum foam holes, which improved the mechanical self-locking effect of the bonding interface.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China NSFC

Scientific Research Project of Shaanxi Provincial Education Department

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3