An In-Networking Double-Layered Data Reduction for Internet of Things (IoT)

Author:

Ismael Waleed,Gao Mingsheng,Al-Shargabi Asma,Zahary Ammar

Abstract

Due to the ever-increasing number and diversity of data sources, and the continuous flow of data that are inevitably redundant and unused to the cloud, the Internet of Things (IoT) brings several problems including network bandwidth, the consumption of network energy, cloud storage, especially for paid volume, and I/O throughput as well as handling huge amount of stored data in the cloud. These call for data pre-processing at the network edge before data transmission over the network takes place. Data reduction is a method for mitigating such problems. Most state-of-the-art data reduction approaches employ a single tier, such as gateways, or two tiers, such gateways and the cloud data center or sensor nodes and base station. In this paper, an approach for IoT data reduction is proposed using in-networking data filtering and fusion. The proposed approach consists of two layers that can be adapted at either a single tier or two tiers. The first layer of the proposed approach is the data filtering layer that is based on two techniques, namely data change detection and the deviation of real observations from their estimated values. The second layer is the data fusion layer. It is based on a minimum square error criterion and fuses the data of the same time domain for specific sensors deployed in a specific area. The proposed approach was implemented using Python and the evaluation of the approach was conducted based on a real-world dataset. The obtained results demonstrate that the proposed approach is efficient in terms of data reduction in comparison with Least Mean Squares filter and Papageorgiou’s (CLONE) method.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3