A Dynamic Task Allocation Framework in Mobile Crowd Sensing with D3QN

Author:

Fu Yanming1,Shen Yuming1ORCID,Tang Liang1

Affiliation:

1. School of Computer and Electronic Information, Guangxi University, No. 100, University East Road, Nanning 530004, China

Abstract

With the coverage of sensor-rich smart devices (smartphones, iPads, etc.), combined with the need to collect large amounts of data, mobile crowd sensing (MCS) has gradually attracted the attention of academics in recent years. MCS is a new and promising model for mass perception and computational data collection. The main function is to recruit a large group of participants with mobile devices to perform sensing tasks in a given area. Task assignment is an important research topic in MCS systems, which aims to efficiently assign sensing tasks to recruited workers. Previous studies have focused on greedy or heuristic approaches, whereas the MCS task allocation problem is usually an NP-hard optimisation problem due to various resource and quality constraints, and traditional greedy or heuristic approaches usually suffer from performance loss to some extent. In addition, the platform-centric task allocation model usually considers the interests of the platform and ignores the feelings of other participants, to the detriment of the platform’s development. Therefore, in this paper, deep reinforcement learning methods are used to find more efficient task assignment solutions, and a weighted approach is adopted to optimise multiple objectives. Specifically, we use a double deep Q network (D3QN) based on the dueling architecture to solve the task allocation problem. Since the maximum travel distance of the workers, the reward value, and the random arrival and time sensitivity of the sensing tasks are considered, this is a dynamic task allocation problem under multiple constraints. For dynamic problems, traditional heuristics (eg, pso, genetics) are often difficult to solve from a modeling and practical perspective. Reinforcement learning can obtain sub-optimal or optimal solutions in a limited time by means of sequential decision-making. Finally, we compare the proposed D3QN-based solution with the standard baseline solution, and experiments show that it outperforms the baseline solution in terms of platform profit, task completion rate, etc., the utility and attractiveness of the platform are enhanced.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3