Towards Network Lifetime Enhancement of Resource Constrained IoT Devices in Heterogeneous Wireless Sensor Networks

Author:

din Muhammad Salah udORCID,Rehman Muhammad Atif Ur,Ullah RehmatORCID,Park Chan-Won,Kim Byung SeoORCID

Abstract

The participating nodes in Wireless Sensor Networks (WSNs) are usually resource-constrained in terms of energy consumption, storage capacity, computational capability, and communication range. Energy is one of the major constraints which requires an efficient mechanism that takes into account the energy consumption of nodes to prolong the network lifetime. Particularly in the large scale heterogeneous WSNs, this challenge becomes more critical due to high data collection rate and increased number of transmissions. To this end, clustering is one of the most popular mechanisms which is being used to minimize the energy consumption of nodes and prolong the lifetime of the network. In this paper, therefore, we propose a robust clustering mechanism for energy optimization in heterogeneous WSNs. In the proposed scheme, nodes declare themselves as cluster head (CH) based on available resources such as residual energy, available storage and computational capability. The proposed scheme employs the multi criteria decision making technique named as Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) which allows the child nodes to select the optimal CH among several potential CH candidates. Moreover, we also propose mechanisms such as CH-acquaintanceship and CH-friendship in order to prolong the network lifetime. Simulation results show that our proposed scheme minimizes the control overhead, reduces the power consumption and enhances overall lifetime of the network by comparing with the most recent and relevant proposed protocol for WSNs.

Funder

Ministry of Education, Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A multi-sensor data fusion algorithm based on consistency preprocessing and adaptive weighting;Automatika;2023-11-21

2. Large Scale Energy Efficient Sensor Network Routing using a Quantum Processor Unit;Journal of Visualized Experiments;2023-09-08

3. A novel energy-efficient scheduling method for three-dimensional heterogeneous wireless sensor networks based on improved memetic algorithm and node cooperation strategy;EURASIP Journal on Wireless Communications and Networking;2023-07-07

4. IDS-MA: Intrusion Detection System for IoT MQTT Attacks Using Centralized and Federated Learning;2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC);2023-06

5. A Dynamic Wireless Sensor Network Deployment Algorithm for Emergency Communications;2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA);2023-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3