Effect of Addition of Ca2+ and CO32− Ions with Temperature Control on Self-Healing of Hardened Cement Paste

Author:

Choi ,Inoue ,Kim ,Choi ,Sengoku

Abstract

: Concrete has a remarkably low ratio of tensile strength to compressive strength, and is widely used in construction. However, the occurrence of cracks in a concrete structure is inevitable. Nevertheless, in the presence of adequate moisture, small cracks in the concrete structure exhibit a propensity to self-heal by getting filled due to the rehydration of cement particles and the subsequent precipitation of calcium carbonate (CaCO3). According to previous studies, the self-healing performance can be maximized by optimizing the temperature and pH to control the crystal formation of CaCO3. This study focused on the crystal form of CaCO3 generated in the self-healing of a cement-based composite material. To evaluate the self-healing performance depending on the type of aqueous solution and the temperature, the weight change, the weight change rate, and the porosity reduction in each case were evaluated. Moreover, to increase the generation of CaCO3 (which is a self-healing precipitate), nanosized ultrafine CO2 bubbles using CO2 gas were used, along with an adequate supply of Ca2+ by adjusting the aqueous solution (Ca(OH)2, CaO + ethanol). For greater pore-filling effects by controlling the CaCO3 crystal forms in the cement matrix, the change in the crystal form of the precipitated CaCO3 in the hardened cement paste with changing temperature was analyzed by scanning electron microscopy and X-ray diffraction. As a result, the possibility of the effective generation and control of vaterite with a dense pore structure together with calcite was confirmed by adjusting the temperature to approximately 40 °C at a pH of 12.

Publisher

MDPI AG

Subject

General Materials Science

Reference39 articles.

1. Effective Crack Control of Concrete by Self-Healing of Cementitious Composites Using Synthetic Fiber

2. Effect of cracking and healing on chloride transport in OPC concrete

3. Influence of service loading and the resulting micro-cracks on chloride resistance of concrete;Wang;Constr. Build. Mater.,2016

4. Influence of cracking caused by structural loading on chloride-induced corrosion process in reinforced concrete elements: A review;Wang,2015

5. Practical Guideline For Investigation, Repair and Strengthening of Cracked Concrete Structure,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3