Interfacial Stress Analysis of Adhesively Bonded Lap Joint

Author:

Her Shiuh-Chuan,Chan Cheng-Feng

Abstract

The use of adhesively bonded joints in place of traditional joining techniques such as bolted or rivet joints is becoming greatly popular in recent years. Interfacial stress in the adhesive is critical to the strength of adhesively bonded joints. It is necessary to predict the interfacial stresses accurately to ensure the safety of joints. In this work, an analytical model is explicitly presented to evaluate the stresses in a double lap joint. The equilibrium equations in the adhesive overlap region are derived on the basis of elasticity theory. The governing equations are presented in terms of shear and peel stresses in the adhesive. Analytical solutions are derived for the shear and peel stresses, which are considered to be the main reason for the failure of the double lap joint. To verify the analytical solutions, the finite element method is conducted using the commercial package ANSYS. Results from the analytical solution agree well with finite element results and numerical investigations available in the literature. The effect of the adhesive thickness, shear modulus, adherend Young’s modulus and bonding length on the shear and peel stresses in the adhesive of the double lap joint are studied. Numerical results demonstrate that both the maximum shear and peel stress occur at both ends of the bonding region. The maximum values of the shear and peel stresses increase as the adhesive thickness decreases and as the adhesive shear modulus increases provided that the adhesive thickness is sufficiently small. The simplicity and capability to obtain analytical expressions of the shear and peel stresses for double lap adhesive bonded joints makes the proposed analytical model applicable for the stress analysis and preliminary structural design.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

General Materials Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3