Energy Evolution Characteristics of Water-Saturated and Dry Anisotropic Coal under True Triaxial Stresses

Author:

Liu Yubing12,Wang Enyuan12,Zhao Dong12,Zhang Li12

Affiliation:

1. School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. Key Laboratory of Gas and Fire Control for Coal Mines, China University of Mining and Technology, Ministry of Education, Xuzhou 221116, China

Abstract

During deep underground coal mining, water-injection-related engineering methods are generally carried out to reduce the hazards of coal dynamic disasters. The energy evolution characteristics of coal can better describe the deformation and failure processes, as it is more consistent with the in situ behavior of underground mining-induced coal. In this study, experimental efforts have been paid to the energy evolution characteristics of water-saturated and dry anisotropic coal under true triaxial stresses. The effects of water saturation, intermediate stress, and anisotropic weak planes of coal on the true triaxial energy evolution were systematically evaluated. The results show that the overall energy is weakened due to the water adsorption for water-saturated coal samples. The water-weakening effect on the overall energy of water-saturated coal is more pronounced when perpendicular to the bedding plane direction than in the other two cleat directions. The accumulation elastic energy anisotropy index of dry and water-saturated coal samples is higher than 100.00%. Both accumulation and residual elastic energy of dry and water-saturated coal samples show an increasing-then-decreasing trend with intermediate stress increase. The results obtained in this study help understand the in situ behavior of coal during deep underground mining and control coal dynamic disasters.

Funder

National Natural Science Foundation of China

Postdoctoral Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3