Demand Response Management of a Residential Microgrid Using Chaotic Aquila Optimization

Author:

Kujur Sushmita,Dubey Hari Mohan,Salkuti Surender ReddyORCID

Abstract

In this paper, Chaotic Aquila Optimization has been proposed for the solution of the demand response program of a grid-connected residential microgrid (GCRMG) system. Here, the main objective is to optimize the scheduling pattern of connected appliances of the building such that overall user cost are minimized under the dynamic price rate of electricity. The GCRMG model considered for analysis is equipped with a fuel cell, combined heat and power (CHP), and a battery storage system. It has to control and schedule the thermostatically controlled deferrable and interruptible appliances of the building optimally. A multipowered residential microgrid system with distinct load demand for appliances and dynamic electricity price makes the objective function complex and highly constrained in nature, which is difficult to solve efficiently. For the solution of such a complex highly constrained optimization problem, both Chaotic Aquila Optimization (CAO) and Aquila optimization (AO) algorithms are implemented, and their performance is analyzed separately. Obtained simulation results in terms of optimal load scheduling and corresponding user cost reveal the better searching and constrained handling capability of AO. In addition, experimental results show that a sinusoidal map significantly improves the performances of AO. Comparison of results with other reported methods are also made, which supports the claim of superiority of the proposed approach.

Funder

“Woosong University’s Academic Research Funding—2023”

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3