Comparative Study of the Impact of Bio-Sourced and Recycled Insulation Materials on Energy Efficiency in Office Buildings in Burkina Faso

Author:

Zoure Abraham NathanORCID,Genovese Paolo Vincenzo

Abstract

This research presents a comparative study of different bio-sourced and recycled insulation materials and their impact on energy consumption of office buildings located in Ouagadougou, a city with a dry hot climate. A thorough assessment of the country’s meteorological and urban development data from 2004 to 2018 was conducted for climatic data. EnergyPlus was used for thermal comfort based on the American Society of Heating, Refrigerating, and Air-conditioning Engineers Standard (ASHRAE) 55 adaptive comfort model and energy analysis by calculating and comparing the yearly energy consumption, heat transfer through the building envelope, and discomfort degree hours. A four-story “H”-shaped office building made of cement blocks with a fixed north–south orientation and a 30% window-to-wall ratio served as the base case for this study to perform two rounds of multiple simulations and evaluate the most effective insulation material. First, exterior walls were insulated, and then the roof and inner floors were insulated using the best material from the first round. The findings confirmed hemp wool as the best performing bio-sourced insulation material, which reduces by 25.8% and 17.7% the annual cooling energy demand at 114,495 kWh and the annual energy consumption at 203,598 kWh, respectively, contributing to saving up to 43,852 kWh in annual energy consumption. Hemp wool impacted wall, roof, and internal floor heat transfer by reducing them by 90.86% at 12,583 kWh, 85.1% at 6666 kWh, and 88.1% at −2664 kWh, respectively, while the discomfort degree hours were reduced by 17.6% at 9720.12. The outcomes provide patterns, explanations, and inferences that may be generalized to other projects in Burkina Faso, especially, and sub-Saharan African countries, in general, where most buildings are not well insulated. The availability of these bio-based and recycled insulation materials may also serve as proof to foster a circular economy in the Burkina Faso construction industry.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3