Calibration of Sentinel-2 Surface Reflectance for Water Quality Modelling in Binh Dinh’s Coastal Zone of Vietnam

Author:

Quang Nguyen HongORCID,Dinh Nguyen Tran,Dien Nguyen Tran,Son Le Thanh

Abstract

Coastal zones are critically important ecosystems that are closely tied to human activities, such as tourism, urbanization, transport, and aquaculture. However, managing and monitoring sea water in the coastal areas is often challenging due to the diversity of the pollution sources. Traditional approaches of onsite measurement and surveys have limitations in terms of cost, efficiency and productivity compared with modern remote sensing methods, particularly for larger and longer observations. Optical remote sensing imagery has been proven to be a good data source for water quality assessment in general and for seawater studies in particular with the use of advanced techniques of data processing such as machine learning (ML) algorithms. However, optical remote sensing data also have their own disadvantages as they are much affected by climatic conditions, atmospheric gas and particles as a source of noise in the data. This noise could be reduced, but it is still unavoidable. This study aims to model seawater quality parameters (total suspended solids (TSS), chlorophyll-a (chla), chemical oxygen demand (COD), and dissolved oxygen (DO)) along a 134 km sea coastal area of the Binh Dinh province by applying the current robust machine learning models of decision tree (DT), random forest (RF), gradient boosting regression (GBR), and Ada boost regression (ABR) using Sentinel-2 imagery. To reduce the atmospheric effects, we conducted onsite measurements of sea surface reflectance (SSR) using the German RAMSES-TriOS instrument for calibration of the Sentinel-2 level 2A data before inputting them to the ML models. Our modeling results showed an improvement of the model accuracy using calibrated SSR compared with the original Sentinel-2 level 2A SSR data. The RF predicted the most accurate seawater quality parameters compared with in situ field-measured data (mean R2 = 0.59 using original Sentinel-2 level 2A SSR and R2 = 0.70 using calibrated SSR). The chla was the most precise estimate (R2 = 0.74 when modelled by the RF model) flowing by DO, COD and TSS. In terms of seawater quality estimation, this accuracy is at a good level. The results of the seawater quality distributions were strongly correlated with coastal features where higher values of TSS, chla, COD, and DO are near the river mouths and urban and tourist areas. These spatial water quality data could be extremely helpful for local governments to make decisions when the modelling is continuously conducted (using big data processing), and it is highly recommended for more applications.

Funder

Department of Science and Technology of the Binh Dinh province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference87 articles.

1. Steele, J.H. (2009). Remote Sensing of Coastal Waters, in Encyclopedia of Ocean Sciences, Academic Press. [2nd ed.].

2. Beach recreationalists’ willingness to pay and economic implications of coastal water quality problems in Hawaii;Peng;Ecol. Econ.,2017

3. The benefits of water quality improvements for marine recreation: A review of the empirical evidence;Freeman;Mar. Resour. Econ.,1995

4. MONRE (2021). Report on Maritime Environment and National Islands in the 2016–2020 Period, Ministry of Natural Resources and Environment. (In Vietnamese).

5. Seawater environmental Kuznets curve: Evidence from seawater quality in China’s coastal waters;Wang;J. Clean. Prod.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3