Dual Effects of N-Butanol and Magnetite Nanoparticle to Biodiesel-Diesel Fuel Blends as Additives on Emission Pattern and Performance of a Diesel Engine with ANN Validation

Author:

Sule AhmedORCID,Latiff Zulkarnain Abdul,Abas Mohd AzmanORCID,Veza Ibham,Soudagar Manzoore Elahi M.ORCID,Harny IriantoORCID,Epin Vorathin

Abstract

This paper investigates impact of magnetite dispersed in butanol and added to two varied blends of palm biodiesel and diesel (B20 and B30). The developed fuel samples were characterized and tested on single cylinder diesel Yanmar engine (L70N) to observe engine behavior for emissions and performance. Results are compared with two reference fuels: YF50 fuel contains 50 ppm magnetite in B20 and Bn10Y90 contains 10% butanol with 90% B20. Addition of magnetite and butanol depletes emissions levels and improve performance compared to ordinary B20 and B30 however; samples with higher dosage of magnetite (150 ppm) yielded better results in performance and emission compared with lower dosage (75 ppm). The best sample was C10Z90 which entails 150 ppm magnetite in butanol added at 10% to B30. Brake thermal efficiency (BTE) at highest brake power (BP) point for C10Z90 was 37.28% compared to others (32.88%, 35.22% and 35.96%). Additionally, brake specific fuel consumption (BSFC) of C10Z90 was at least 8.29 g/Kw.hr and at most 84.52 g/Kw.hr less than other samples at highest BP point. Results indicated C10Z90 was lower in carbon-monoxide, hydrocarbon and smoke except for oxides of nitrogen. Artificial Neural Network (ANN) model successfully predicted BTE, BSFC and emissions of the dual fuel application.

Funder

Malaysian Palm Oil Board (MPOB) in collaboration with Universiti Teknologi Malaysia

Nigerian Tertiary Education Trust Fund Scholarship

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3