SDN-Based Routing Framework for Elephant and Mice Flows Using Unsupervised Machine Learning

Author:

Al-Saadi Muna12,Khan Asiya1ORCID,Kelefouras Vasilios1,Walker David J.1,Al-Saadi Bushra2

Affiliation:

1. Autonomous Marine Systems Research Group, School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth PL4 8AA, UK

2. Department of Missions and Cultural Relations, University of Information Technology and Communications (UoITC), Baghdad 00964, Iraq

Abstract

Software-defined networks (SDNs) have the capabilities of controlling the efficient movement of data flows through a network to fulfill sufficient flow management and effective usage of network resources. Currently, most data center networks (DCNs) suffer from the exploitation of network resources by large packets (elephant flow) that enter the network at any time, which affects a particular flow (mice flow). Therefore, it is crucial to find a solution for identifying and finding an appropriate routing path in order to improve the network management system. This work proposes a SDN application to find the best path based on the type of flow using network performance metrics. These metrics are used to characterize and identify flows as elephant and mice by utilizing unsupervised machine learning (ML) and the thresholding method. A developed routing algorithm was proposed to select the path based on the type of flow. A validation test was performed by testing the proposed framework using different topologies of the DCN and comparing the performance of a SDN-Ryu controller with that of the proposed framework based on three factors: throughput, bandwidth, and data transfer rate. The results show that 70% of the time, the proposed framework has higher performance for different types of flows.

Publisher

MDPI AG

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3