Machine Learning Applied to LoRaWAN Network for Improving Fingerprint Localization Accuracy in Dense Urban Areas
Author:
Affiliation:
1. Department of Computer Science and Engineering, Università di Bologna, 40126 Bologna, Italy
2. Telebit S.p.A., 31030 Casier, Italy
Abstract
Publisher
MDPI AG
Subject
Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science
Link
https://www.mdpi.com/2673-8732/3/1/10/pdf
Reference40 articles.
1. Augustin, A., Yi, J., Clausen, T., and Townsley, W. (2016). A study of lora: Long range low power networks for the internet of things. Sensors, 16.
2. Torregiani, M. Combining Q-Learning and Multi-Layer Perceptron Models on Wireless Channel Quality Prediction;Piroddi;Am. J. Eng. Appl. Sci.,2021
3. Anagnostopoulos, G.G., and Kalousis, A. (2022). Can I Trust This Location Estimate? Reproducibly Benchmarking the Methods of Dynamic Accuracy Estimation of Localization. Sensors, 22.
4. Fargas, B.C., and Petersen, M.N. (2017, January 6–9). GPS-free geolocation using LoRa in low-power WANs. Proceedings of the 2017 Global Internet of Things Summit (GIoTS), Geneva, Switzerland.
5. Maróti, M., Völgyesi, P., Dóra, S., Kusy, B., Nádas, A., Lédeczi, Á., Balogh, G., and Molnár, K. (2005, January 2–4). Radio interferometric geolocation. Proceedings of the SenSys’05, San Diego, CA, USA.
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. RSS-Based Localization using Deep Learning Models with Optimizer in LoRaWAN-IoT Networks;2024 IEEE International Conference for Women in Innovation, Technology & Entrepreneurship (ICWITE);2024-02-16
2. Harnessing Learn Rate Schedule for Adaptive Deep Learning in LoRaWAN-IoT Localization;IEEE Access;2024
3. LoRaWAN Meets ML: A Survey on Enhancing Performance with Machine Learning;Sensors;2023-08-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3