On Attacking Future 5G Networks with Adversarial Examples: Survey

Author:

Zolotukhin MikhailORCID,Zhang Di,Hämäläinen Timo,Miraghaei Parsa

Abstract

The introduction of 5G technology along with the exponential growth in connected devices is expected to cause a challenge for the efficient and reliable network resource allocation. Network providers are now required to dynamically create and deploy multiple services which function under various requirements in different vertical sectors while operating on top of the same physical infrastructure. The recent progress in artificial intelligence and machine learning is theorized to be a potential answer to the arising resource allocation challenges. It is therefore expected that future generation mobile networks will heavily depend on its artificial intelligence components which may result in those components becoming a high-value attack target. In particular, a smart adversary may exploit vulnerabilities of the state-of-the-art machine learning models deployed in a 5G system to initiate an attack. This study focuses on the analysis of adversarial example generation attacks against machine learning based frameworks that may be present in the next generation networks. First, various AI/ML algorithms and the data used for their training and evaluation in mobile networks is discussed. Next, multiple AI/ML applications found in recent scientific papers devoted to 5G are overviewed. After that, existing adversarial example generation based attack algorithms are reviewed and frameworks which employ these algorithms for fuzzing stat-of-art AI/ML models are summarised. Finally, adversarial example generation attacks against several of the AI/ML frameworks described are presented.

Funder

Magister Solutions Ltd.

Publisher

MDPI AG

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Reference213 articles.

1. (2017). Minimum Requirements Related to Technical Performance for IMT2020 Radio Interface(s) (Standard No. ITU-R M.2410-0).

2. 5G and “IMT for 2020 and beyond” [Spectrum Policy and Regulatory Issues];Marcus;IEEE Wirel. Commun.,2015

3. A Comprehensive Survey of Pilot Contamination in Massive MIMO—5G System;Elijah;IEEE Commun. Surv. Tutor.,2016

4. Joint Optimization of Fractional Frequency Reuse and Cell Clustering for Dynamic TDD Small Cell Networks;Song;IEEE Trans. Wirel. Commun.,2021

5. (2021). Study on Enhancement for Data Collection for NR and EN-DC (Standard No. TR37.817, G).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3