Abstract
Although the effect of high temperature on the performance of organic solar cells has been widely investigated, it is inevitably influenced by the associated annealing effect (which usually leads to film morphology change and variation in electrical properties), which makes the discussion more sophisticated. In this study, we simplified the issue and investigated the influence of low temperatures (from room temperature to 77 K) on the photocurrent and internal/external quantum efficiency of a CuPc/C60 based solar cell. We found that besides the charge dynamic process (charge transport), one or more of the exciton dynamic processes, such as exciton diffusion and exciton dissociation, also play a significant role in affecting the photocurrent of organic solar cells at different temperatures. Additionally, the results showed that the temperature had negligible influence on the absorption of the CuPc film as well as the exciton generation process, but obviously influenced the other two exciton dynamic processes (exciton diffusion and exciton dissociation).
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献