Flexohand: A Hybrid Exoskeleton-Based Novel Hand Rehabilitation Device

Author:

Ahmed TanvirORCID,Assad-Uz-Zaman Md,Islam MdORCID,Gottheardt Drew,McGonigle Erin,Brahmi BrahimORCID,Rahman Mohammad

Abstract

Home-based hand rehabilitation has excellent potential as it may reduce patient dropouts due to travel, transportation, and insurance constraints. Being able to perform exercises precisely, accurately, and in a repetitive manner, robot-aided portable devices have gained much traction these days in hand rehabilitation. However, existing devices fall short in allowing some key natural movements, which are crucial to achieving full potential motion in performing activities of daily living. Firstly, existing exoskeleton type devices often restrict or suffer from uncontrolled wrist and forearm movement during finger exercises due to their setup of actuation and transmission mechanism. Secondly, they restrict passive metacarpophalangeal (MCP) abduction–adduction during MCP flexion–extension motion. Lastly, though a few of them can provide isolated finger ROM, none of them can offer isolated joint motion as per therapeutic need. All these natural movements are crucial for effective robot-aided finger rehabilitation. To bridge these gaps, in this research, a novel lightweight robotic device, namely “Flexohand”, has been developed for hand rehabilitation. A novel compliant mechanism has been developed and included in Flexohand to compensate for the passive movement of MCP abduction–adduction. The isolated and composite digit joint flexion–extension has been achieved by integrating a combination of sliding locks for IP joints and a wire locking system for finger MCP joints. Besides, the intuitive design of Flexohand inherently allows wrist joint movement during hand digit exercises. Experiments of passive exercises involving isolated joint motion, composite joint motions of individual fingers, and isolated joint motion of multiple fingers have been conducted to validate the functionality of the developed device. The experimental results show that Flexohand addresses the limitations of existing robot-aided hand rehabilitation devices.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anthropomorphic Soft Hand: Dexterity, Sensing, and Machine Learning;Actuators;2024-02-21

2. Effects of Hand Function Rehabilitation Strategies in Fracture Recovery;Allied Medical Research Journal;2024-01-30

3. Design and Modeling of an Exoskeleton Robotic System for the Rehabilitation of Lower Limbs;2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET);2023-04-29

4. A Composite Robust Position Control Design for an Actuated Knee Rehabilitation Exoskeleton;2023 20th International Multi-Conference on Systems, Signals & Devices (SSD);2023-02-20

5. Comparison Between Some Nonlinear Controllers for the Position Control of Lagrangian-type Robotic Systems;Chaos Theory and Applications;2022-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3