Research Progress of ECG Monitoring Equipment and Algorithms Based on Polymer Materials

Author:

Zhang LvhengORCID,Liu JihongORCID

Abstract

Heart diseases such as myocardial ischemia (MI) are the main causes of human death. The prediction of MI and arrhythmia is an effective method for the early detection, diagnosis, and treatment of heart disease. For the rapid detection of arrhythmia and myocardial ischemia, the electrocardiogram (ECG) is widely used in clinical diagnosis, and its detection equipment and algorithm are constantly optimized. This paper introduces the current progress of portable ECG monitoring equipment, including the use of polymer material sensors and the use of deep learning algorithms. First, it introduces the latest portable ECG monitoring equipment and the polymer material sensor it uses and then focuses on reviewing the progress of detection algorithms. We mainly introduce the basic structure of existing deep learning methods and enumerate the internationally recognized ECG datasets. This paper outlines the deep learning algorithms used for ECG diagnosis, compares the prediction results of different classifiers, and summarizes two existing problems of ECG detection technology: imbalance of categories and high computational overhead. Finally, we put forward the development direction of using generative adversarial networks (GAN) to improve the quality of the ECG database and lightweight ECG diagnosis algorithm to adapt to portable ECG monitoring equipment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3