An Improvement on Selective Separation by Applying Ultrasound to Rougher and Re-Cleaner Stages of Copper Flotation

Author:

Hassanzadeh Ahmad,Sajjady Sayed Ali,Gholami Hamed,Amini Saeed,Özkan Safak GökhanORCID

Abstract

It has been known that the power ultrasound is used as a pretreatment and rarely applied as a simultaneous method to improve grade and recovery during froth flotation processes. This work aimed at investigating the impact of simultaneously used ultrasonic waves under variant operating configurations on the flotation of representative porphyry copper ore during rougher and re-cleaner stages. For this purpose, four different operating outlines were examined as (I) conventional flotation, (II) homogenizer, (III) ultrasonic bath, and (IV) combination of a homogenizer and an ultrasonic bath. The ultrasonic vibration was generated by the homogenizer (21 kHz, 1 kW) in the froth zone and ultrasonic bath (35 kHz, 0.3 kW) in the bulk zone. The rougher and re-cleaner flotation experiments were conducted using Denver-type mechanically agitated cells with 4.2 and 1 L capacities, respectively. The results showed that using the homogenizer (at 0.4 kW) slightly affected the selectivity separation index of chalcopyrite and pyrite, although it positively increased the grade of chalcopyrite from 21.5% to 25.7%. The ultrasonic-assisted flotation experiments with the ultrasonic bath and its combination with the homogenizer (0.4 kW) (i.e., configurations III and IV) led to an increase of approximately 16.1% and 26.9% in the chalcopyrite selectivity index compared to the conventional flotation, respectively. At the cleaning stage, a lower grade of aluminum silicate-based minerals was obtained desirably in every ultrasonic-treated configuration, which was supported with the water recoveries. Finally, applying the homogenizer and its combination with the ultrasonic bath were recommended for re-cleaner and rougher stages, respectively. Further fundamental and practical knowledge gaps required to be studied were highlighted.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Ultrasonic Treatment in Mineral Flotation: Mechanism and Recent Development;Molecules;2024-04-25

2. Ilgın Linyit Kömürünün Yağ Aglomerasyonunun Ultrasonik Proses ile İyileştirilmesi;Çukurova Üniversitesi Mühendislik Fakültesi Dergisi;2024-03-28

3. Mechanism of ultrasonic cavitation to improve the effect of siderite on quartz flotation;Physicochemical Problems of Mineral Processing;2023-05-08

4. Ultrasonik işlemin linyit süspansiyonunun yağ aglomerasyonu üzerine etkisi;Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi;2023-03-24

5. The Effect of Ultrasound Treatment on Oil Agglomeration of Barite;Mineral Processing and Extractive Metallurgy Review;2022-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3